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Abstract—Intelligent reflecting surface (IRS) is a promising
technology for beyond 5th Generation of the wireless communi-
cations. In fully passive IRS-assisted systems, channel estimation
is challenging and should be carried out only at the base
station or at the terminals since the elements of the IRS are
incapable of processing signals. In this letter, we formulate a
tensor-based semi-blind receiver that solves the joint channel
and symbol estimation problem in an IRS-assisted multi-user
multiple-input multiple-output system. The proposed approach
relies on a generalized PARATUCK tensor model of the signals
reflected by the IRS, based on a two-stage closed-form semi-
blind receiver using Khatri-Rao and Kronecker factorizations.
Simulation results demonstrate the superior performance of the
proposed semi-blind receiver, in terms of the normalized mean
squared error and symbol error rate, as well as a lower computa-
tional complexity, compared to recently proposed parallel factor
analysis-based receivers.

Index Terms—Channel estimation, intelligent reflecting sur-
face, MIMO system, PARATUCK decomposition.

I. INTRODUCTION

INTELLIGENT reflecting surface is a promising technology
to beyond 5th Generation (5G) of the wireless networks,

which may offer high spectral efficiency, while improving
the energy efficiency/reliability and reducing the end-to-end
latency and cost [1]. An IRS is a two-dimensional array struc-
ture composed of a large number of passive (or semi-passive)
software-controlled reconfigurable scattering elements, whose
electromagnetic response can be dynamically adjusted [2]. In
most studied implementations, an IRS operates by applying
phase shifts to the incident radio waves in favor of signal
reception.

In an IRS-assisted wireless network, the acquisition of
instantaneous channel state information (CSI) is an important
and challenging task, since the accuracy of the CSI has signifi-
cant impact on the optimization of the IRS phase shifts. Recent
works have proposed different solutions to tackle the channel
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estimation (CE) problem in IRS-assisted communications in
single-user single-antenna/multi-antenna systems [3], [4]. In
[3], the CE performance is evaluated by means of a tensor
modeling of the received signal using an iterative solution,
which increases the complexity. In [4], the authors assume
a semi-active IRS structure. This assumption undermines the
low-cost structure of the IRS, since radio-frequency (RF)
chains are used. Considering a multi-user (MU) scenario, [5]
and [6] exploit IRS element grouping and spatial correlation
to control the pilot overhead. In both [5] and [6], the authors
assume a quasi-static block fading channel model for all the
involved links, which leads to a degradation on the perfor-
mance of CE when some mobility of the user terminal (UT)
is considered. In particular, [6] exploits the correlation among
the UT-IRS-base station (BS) channels of different users. Note
that all these methods are pilot-assisted schemes. In contrast,
blind and semi-blind receivers perform CE and data detection
without employing pilot sequences.

Approaches based on tensor modeling have been pro-
posed for conventional point-to-point multiple-input multiple-
output (MIMO) systems (see, e.g., [7], [8] and the references
therein). Specifically, a constrained factor decomposition is
derived in [7] to formulate a space-time spreading model,
while [8] capitalizes on the PARATUCK1 model to derive
a semi-blind joint CE and data detection for multi-carrier
MIMO systems. In the context of IRS-assisted communica-
tions, tensor modeling has been recently proposed in [9] to
solve the CE problem in a multi-user multiple-input single-
output (MU-MISO) IRS-assisted system, by capitalizing on
the multidimensional structure of the signal reflected by the
IRS via a pilot-assisted scheme based on the parallel factor
(PARAFAC) tensor decomposition. Reference [3] goes in the
same direction, by proposing iterative and closed-form CE
methods for single-user MIMO IRS-assisted communications.
These works, however, can only operate with the use of pilot
sequences, at the cost of increasing the end-to-end latency.

This letter2 formulates a semi-blind receiver that solves the

1The name PARATUCK is derived from the combination of the PARAFAC
and Tucker tensor decompositions.

2Notation: Scalars are denoted by lowercase letters (a), vectors by bold
lowercase letters (a), matrices by bold capital letters (A), and tensors by
calligraphic letters (A). The transpose and Hermitian transpose of a given
matrix A are denoted by AT and AH, respectively. Di(A) is a diagonal
matrix holding the i-th row of A on its main diagonal. ‖ · ‖F is the
Frobenius norm of a matrix. The operator diag(a) forms a diagonal matrix
out of its vector argument, while � and ⊗ denote the Khatri Rao and
Kronecker products, respectively. The operator vec(·) vectorizes an I × J
matrix argument, while unvecI×J (·) does the opposite operation. Ai. denotes
the i-th row of the matrix A, and IJ is an identity matrix of size J × J .
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Fig. 1: Transmission structure.

problem of joint channel and symbol estimation in an IRS-
assisted wireless network without the need of a dedicated
training stage. We address a realistic scenario, in which the
channels between the UT and the IRS undergo shorter term
variations compared to the channel between the BS and the
IRS. Considering an uplink multi-user multiple-input multiple-
output (MU-MIMO) setup, we show that the signals reflected
by the IRS and received at the BS follow a generalized
PARATUCK tensor model. By exploiting the algebraic struc-
ture of this tensor model, we derive a semi-blind receiver
algorithm that allows the BS to jointly estimate the multiple
uplink UT-IRS channels, the common IRS-BS channel, and
the data symbols transmitted by all UTs, in a closed-form way
by solving simple rank-one matrix approximation problems.

The proposed two-stage closed-form semi-blind receiver
consists of a sequential combination of the Khatri-Rao fac-
torization (KRF) and Kronecker factorization (KF) schemes,
and is referred to as KAKF in the sequel. We compare our pro-
posed semi-blind method with a recently proposed PARAFAC-
based receiver [9] and with the KRF receiver [3], which are
two pilot-assisted methods. The first is an iterative solution that
solves two least squares (LS) problems to estimate the involved
channel matrices, while the second is a closed-form scheme
based on rank-one matrix approximations. Numerical results
corroborate the improved CE accuracy, superior symbol error
rate (SER) performance, and lower computational complexity
offered by the proposed semi-blind receiver.

II. SYSTEM MODEL

Consider the uplink communication in an IRS-assisted
MU-MIMO system, in which the BS is equipped with M
antennas, the IRS is composed of N passive scattering ele-
ments, while each of the U UTs has L antennas3. We assume
that the BS and the IRS are deployed at fixed heights, e.g.,
on the roof of a building, compared to the moving UTs. In
this sense, we assume that the transmitted data is organized
into I data frames. Each frame is composed of KT symbol
periods, where K denotes the number of blocks contained in
each frame and T is the number of time slots in each block.
This transmission structure is illustrated in Fig. 1. To capture
a certain level of UT mobility, we assume that the UT-IRS
channels stay constant during a frame, but vary in different
frames independently. On the other hand, the IRS-BS channel
follows a quasi-static model [10], and is assumed to remain
constant during the transmission time. This is a reasonable
assumption since the BS and the IRS are assumed to be

3We assume that the users have the same number of antennas for simplicity
of exposition. However, the proposed solution can be straightforwardly
adapted to users with different numbers of antennas.

deployed at fixed positions. We also assume that the direct
communication links between the UTs and the BS are weak
or not available. Each UT sends L data symbol vector that
are diagonally coded as zu[k, t] = diag(wu[k])xu[t] ∈ CL×1,
where xu[t] ∈ CL×1 is the symbol vector transmitted by the
u-th UT at the t-th time slot, t = 1, . . . , T , whose entries
are drawn from any finite-alphabet constellation. The vector
wu[k] ∈ CL×1 denotes the coding vector associated with the
u-th UT at the k-th block. The quasi-static IRS-BS channel
matrix is denoted by H ∈ CM×N , while the time-varying
channel matrix between the IRS and the u-th UT at frame i
is denoted as Gu,i ∈ CN×L. Therefore, the received signal at
the BS coming from the u-th UT via IRS is given by

yu[i, k, t] = Hdiag(s[k])Gu,izu[k, t] + v[i, k, t], (1)

where s[k] ∈ CN×1 collects the phase shifts sn[k] = ejφn[k]

applied by the IRS during the k-th block, and v[i, k, t] ∈
CM×1 denotes the additive white Gaussian noise (AWGN)
term. Note that the IRS phase shifts configuration and the
coding vectors are known by the BS and remains constant
during the T time slots within the k-th block, but varies
between different blocks.

At the BS, the received signal is represented as the super-
position of the signals coming from the U UTs. Therefore, the
total received signal can be expressed as

y[i, k, t] = Hdiag(s[k])

(
U∑

u=1

Gu,idiag(wu[k])xu[t]

)
+ v[i, k, t],

(2)
or, more compactly,

y[i, k, t] = Hdiag(s[k])Gidiag(w[k])x[t] + v[i, k, t], (3)

where Gi = [G1,i, . . . ,GU,i] ∈ CN×UL represents the
augmented multi-user uplink channel matrix at frame i. Also,
x[t] =

[
xT

1[t], . . . ,xT
U [t]

]T ∈ CUL×1 collects the trans-
mitted data symbol vectors from all UTs, and w[k] =[
wT

1 [k] . . . wT
U [k]

]T ∈ CUL×1 collects the U coding vec-
tors used by the UTs in block k. Defining Y[i, k]

.
=

[y[i, k, 1], . . . ,y[i, k, T ]] ∈ CM×T that collects the received
signal vectors during the t = 1, . . . , T time slots, we obtain

Y[i, k] = HDk(S)GiDk(W)XT + V[i, k], (4)

where S ∈ CK×N is the phase shifts matrix, W =
[w[1] . . . w[K]]

T ∈ CK×UL and X = [x[1] . . . x[T ]]
T ∈

CT×UL. The useful part of the received signal in (4) can
be identified as a generalized PARATUCK decomposition of
a fourth-order tensor Y ∈ CM×I×K×T written in terms of
its (i, k)-th matrix slices, where the frame i and block k
dimensions are fixed. Our goal is to jointly estimate in a semi-
blind way, i.e., without resorting to a dedicated training stage,
the IRS-BS channel H, the UTs-IRS channels that make up Gi

and the transmitted data symbols X from the received signal
tensor in (4). To this end, in the following, we formulate the
detailed processing stages of the proposed closed-form semi-
blind receiver.
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III. PROPOSED SEMI-BLIND KAKF RECEIVER

The vectorized form of the received signal in (4) as

yi,k = (X⊗H) vec(Dk(S)GiDk(W))

= (X⊗H) (Dk(W)⊗Dk(S)) gi
, (5)

where gi
.
= vec(Gi) ∈ CNLU , and we have used the

Kronecker product property vec(ABC) =
(
CT ⊗A

)
vec(B).

Defining yk
.
= [y1.k, . . . ,yI,k] that collects the I received

signals for the k-th block, we can rewrite (5) as

yk = Q (Dk(W)⊗Dk(S)) GT, k = 1, . . . ,K, (6)

where G = [g1, . . . ,gI ]
T ∈ CI×P and Q = X ⊗ H ∈

CTM×P , with P = NLU . Resorting again to the property of
the Kronecker product, we rewrite (6) more compactly as

yk = (G �Q) (Wk. ⊗ Sk.)
T
. (7)

Finally, by collecting the received signals yk, k = 1, . . . ,K,
over the K blocks, we have

Y
.
= [y1, . . . ,yK ] = (G �Q) Ψ ∈ CITM×K , (8)

where Ψ = WT � ST =
[
WT

1. ⊗ ST
1. . . . WT

K. ⊗ ST
K.

]
∈

CP×K . From (8), we observe that the LS estimate of the
Khatri-Rao product G � Q can be obtained. To avoid the
pseudo inverse calculation, we assume that Ψ is constructed
based on a Discrete Fourier Transform factorization design4

as in [11], such that (1/K) ΨΨH = IP . Note, however,
that the orthogonality of Ψ is not requirement of our semi-
blind receiver. Using G �Q estimated from Y, the individual
estimates of G (i.e., UTs-IRS channels) and Q = X⊗H can
be obtained by means of the KRF approach, which consists
of solving a set of rank-one matrix approximation problems.
Sequentially, from Q, which is estimated via KRF in the
previous stage, the individual estimates of H and X can be
obtained using the KF, which consists of solving a single
rank-one matrix approximation problem. The KAKF receiver
accomplishes joint channel and symbol estimation in closed-
form from two stages as detailed in the following.

A. Khatri-Rao Factorization (KRF) Stage

Considering the noisy version of (8), and exploiting the
knowledge of the phase shifts and coding matrices S and
W, respectively (and thus Ψ), the BS firstly applies a linear
filtering with ΨH, yielding

Z
.
= (1/K)YΨH = G �Q + N̄ ∈ CITM×P , (9)

where N̄ = NΨH represents the equivalent filtered noise term.
From (9), the individual estimates of Ĝ and Q̂ can be obtained
from their noisy Khatri-Rao product by solving(

Ĝ, Q̂
)

= min
{G,Q}

‖Z−G �Q‖2F . (10)

Defining µp as the p-th column of Z, we have µp
.
= (gp ⊗

qp) + np, where np is the corresponding column of the noise

4The design of the phase shifts S and the coding W matrices is a relevant
point, especially in the optimization context. However, the optimization study
on these matrices is out of the scope of this work. Further, the structure of S
and W impacts the design of the matrix Ψ regarding complexity aspects.

Algorithm 1: Khatri-Rao Factorization (KRF) Stage
Procedure
input : Z
output: Ĝ and Q̂

begin
for p = 1, . . . , P do

Z̄p ←− unvecTM×I(µp)
(u1, σ1,v1)←− truncated-SVD(Z̄p)
ĝp ←−

√
σ1v∗

1 , where σ1 is the dominant singular value
q̂p ←−

√
σ1u1

end
Reconstruct Q̂ and Ĝ:
Q̂←− [q̂1, . . . , q̂P ]; Ĝ←− [ĝ1, . . . , ĝP ]

Remove the scaling ambiguities of Q̂ and Ĝ.
end

matrix in (9), and gp ∈ CI×1 and qp ∈ CTM×1 corresponds
to the p-th column of the matrices G and Q, respectively.
Using the property gp ⊗ qp = vec(qpg

T
p), Problem (10) can

be equivalently recast as(
Ĝ, Q̂

)
= arg min
{qp,gp}

P∑
p=1

∥∥∥Z̃p − qpg
T
p

∥∥∥2

F
, (11)

where Z̃p = unvecTM×I(µp). Note that Z̃p can be approx-
imated as a rank-one matrix given by the outer product of
qp and gp. The solution of (11) is given by the best rank-
one approximation obtained from the dominant left and right
singular vectors of Z̃p [12]. Therefore, the KRF stage of the
proposed receiver thus consists of solving P independent rank
one-approximation problems, as summarized in Algorithm 1.

B. Kronecker Factorization Stage

Recall that the estimate of Q̂ is delivered from the KRF
stage in section III-A. From (5) and (6), we have that Q̂ can
be approximated as the Kronecker product of the transmitted
data matrix and IRS-BS channel matrix, i.e.

Q̂ ≈ X⊗H ∈ CTM×P . (12)

According to the Kronecker product definition, Q̂ can be seen
as the following block matrix

Q̂ =

 Q̂1,1 . . . Q̂1,UL

...
. . .

...
Q̂T,1 . . . Q̂T,UL

 ∈ CTM×P , (13)

where each of the sub-matrices represents a scaled version of
H, i.e.,

Q̂t,j = xt,jH, (14)

for t = 1, . . . , T and j = 1, . . . , UL. Therefore, the individual
estimates for X̂ and Ĥ can be obtained from Q̂ by solving

(X̂, Ĥ) = min
X,H
‖Q̂−X⊗H‖F. (15)

The matrix Q̂ can be properly rearranged by stacking the
vectorized form of the blocks Q̂t,j in (14), as in [13], so that
a rank-one matrix Q̃ is constructed, as follows

Q̃ =
[
x1,1vec(H) . . . xT,ULvec(H)

]T

= vec(X)vec(H)T ∈ C(TUL)×(NM).
(16)
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Algorithm 2: Kronecker Factorization Stage
Procedure
input : Q̂
output: X̂ and Ĥ

begin
1. Construct the rank-one matrix Q̃ ∈ CTLU×MN from Q̂.
2. (u1, σ1,v1)←− truncated-SVD(Q̃)

x̂←− √σ1u1; ĥ←− √σ1v∗
1

3. Reconstruct X̂ and Ĥ by unvec x̂ and ĥ
4. Remove the scaling ambiguities of X̂ and Ĥ.

end

Therefore, the problem in (15) becomes equivalent to solving
the following rank-one matrix approximation problem

(X̂, Ĥ) = min
X,H
‖Q̃− xhT‖F, (17)

where x = vec(X) and h = vec(H). The best estimates to
x and h (and consequently to X and H) are obtained by
truncating the singular value decomposition (SVD) of Q̃ to
its rank-one approximation. Therefore, the KF stage of the
proposed receiver is solved from a single rank-one matrix
approximation step, as shown in Algorithm 2.

C. Identifiability Analysis and Computational Complexity

The necessary condition on the identifiability of the pro-
posed KAKF receiver is linked to the linear filtering step in
(9). It requires that the designed matrix Ψ to be full row-
rank, implying that K ≥ P . This condition establishes a
lower-bound on the number of transmission blocks necessary
for the proposed receiver to jointly estimate the channels and
data symbols of all the users. This indicates that the required
number of transmission blocks scales with L, N and U at least
linearly, as P = NLU . Note that the computational complex-
ity in both stages (Algorithms 1 and 2) of the proposed KAKF
receiver is dominated by the truncated SVD. This truncated
SVD can be efficiently obtained from partial QR factorization
schemes [14]. The total complexity of KAKF receiver is given
by O(PTM) + PO(TMI), since the KF stage involves a
single rank-1 approximation step, while the KRF one has P
rank-1 approximation steps. It is worth noting that in the KRF
stage the P factors of the Khatri-Rao product can be estimated
independently. Hence, the processing delay can be controlled
by executing the P estimation steps in parallel processors at
the BS. The pilot-assisted method [9], used as benchmark,
is an iterative solution where the computational complexity is
dominated by the pseudo-inverse calculation such that the total
complexity is ImaxO(2N3 +4N2K(L+M)−NK(L+M)).

D. Scaling Ambiguities

Once the rank-one approximations are computed via trun-
cated SVDs, the estimates provided by the KRF and KF stages
are unique up to scaling ambiguities. From the KRF stage, the
following estimates are obtained Ĝ = G∆G and Q̂ = Q∆Q,
where ∆G and ∆Q are diagonal matrices that contain the
column scaling ambiguities such that ∆G∆Q = IP . To
remove these scaling ambiguities, the BS needs to know one
row of G or Q. Such a scaling can be handled by assuming
that the first row of Q is known. This is equivalent to assuming
that the BS has the knowledge of the first row of X and the

first row of the BS-IRS channel H. In practice, the BS can
estimate the first row of H based on a simple scheme proposed
in [10], where the IRS reflects back pilots sent by the BS.

IV. SIMULATION RESULTS

In this section, the performance of the proposed two-
stage KAKF semi-blind receiver is evaluated in terms of the
normalized mean squared error (NMSE) of the estimated chan-
nels, average SER, and average runtime metrics. Particularly,
the NMSE of the BS-IRS CE is defined as NMSE(Ω̂) =
(1/R)

∑R
r=1

‖Ω(r) − Ω̂(r)‖2F/‖Ω(r)‖2F , where Ω = H or G, and
Ω̂(r) represents the estimation of the channel at the r-th Monte
Carlo run. The results are averaged over R = 104 independent
Monte Carlo runs. We assume that the involved channels
follow geometric models such that H = AIRSdiag(β)AH

BS and
G = BUTdiag(γ)BH

IRS (for each UT), in which the number of
dominant paths in the IRS-BS and UTs-IRS links are denoted
by Lh and Lg5, respectively, while β and γ denote the channel
gain vectors. The departure and arrival angles are randomly
and uniformly distributed between 0 and 2π, while the path
gains follow a complex Gaussian distribution with zero mean
and unitary variance. The transmitted data symbols are chosen
from a 16-PSK alphabet, and each UT has a transmission rate
of ρ = [(T − 1) + TD] log2(M)L/Tc for a given coherence time Tc
and data transmission time TD.

Figure 2a depicts the NMSE performance of the proposed
semi-blind KAKF receiver as a function of the signal-to-noise
ratio (SNR). As a performance benchmark, we also depict
the results of the bilinear alternating least squares (BALS)
method proposed in [9], as well as the results of the closed-
form KRF solution proposed in [3], which are pilot-assisted
methods. Although the competitive methods do not consider
UTs-IRS time-varying channels, we adapt them to the time-
varying case to ensure a fair comparison. In this experiment,
we assume N = 36, M = 4, U ∈ {5, 7}, each UT equipped
with 2 antennas (L = 2). Besides, we consider Lh = 1 and
Lg = 1. Further, the BS captures I = 5 UTs-IRS channel
variations and {T,K} = {2, 720}. As it can be observed, our
proposed semi-blind KAKF receiver significantly outperforms
the BALS method in the accuracy of the estimation of the
UTs-IRS channel G. As for the IRS-BS channel H, the BALS
method outperforms the proposed receiver in the low signal-
to-noise ratio (SNR) regime for U = 5. However, in the
medium-to-high SNR regime, the two receivers show similar
performances. Besides, the BALS estimator, which requires
pilot sequences, has a very modest gain for U = 7. This is an
expected result since the IRS-BS channel H is estimated in the
second KF stage when using the KAKF receiver. Therefore, it
is affected by the error propagation originating from the first
KRF stage. This explains its worse performance in estimating
H in the low SNR regime compared to BALS, in which
each channel matrix is estimated in an alternating way, thus
avoiding error propagation. Note that the KRF [3] performance
is similar to the BALS performance. However, considering the
end-to-end channel, our proposed scheme offers a remarkable

5For simplicity, in the simulations, we assume that each UT contributes
with the same number Lg of dominant paths.
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Fig. 2: Performance evaluation of the proposed KAKF receiver in terms of channels NMSE, average runtime and SER.

improvement in the CE accuracy. For an SNR equal to 20 dB,
while KAKF and BALS have similar NMSE performances for
the estimation of H, the proposed scheme offers an order of
magnitude improvement in the estimation of G (see Fig. 2a).

To evaluate the computational complexity of the proposed
semi-blind KAKF receiver, we consider the same parameters
as in Fig. 2a and plot in Fig. 2b the average runtime as a
function of the SNR. Since the KAKF receiver has a closed-
form solution, it offers a considerable complexity reduction
compared to the iterative BALS receiver [9]. On the other
hand, the KRF method [3] is a bit faster than our proposed
method, since the KAKF receiver involves an additional
processing step to estimate the symbol matrix. Furthermore,
the computational complexity of KAKF does not depend
on the SNR, unlike BALS, where the number of iterations
for convergence increases for lower SNR values. This is an
interesting result, since the CE performance and the computa-
tional complexity depend on the number of parameters to be
estimated, which scales with the number of UTs. In particular,
the estimate of H is more accurate than that of G, since the
latter has more coefficients to be estimated. However, even in
this situation, KAKF has a much lower runtime compared to
the method of [9] and, thus, an improved end-to-end latency,
for the same data block length.

The SER performance is illustrated in Fig. 2c6 considering
different numbers of users U ∈ {4, 10}, different numbers of
antennas M ∈ {4, 16}, and different numbers of IRS elements
N ∈ {16, 36}. Besides, K = NLU and T = 4. The other
parameters are the same as in Fig. 2a. This result shows
that the SER decreases as a function of the number of IRS
elements. This is an interesting result since no optimization
process is carried out, which may further improve the system
performance. Fixing N = 16, the effect of the number of
antennas at the BS and the number of users is shown. By
increasing M and keeping U = 4, the SER improves due
to a spatial diversity gain. Changing the roles, i.e., keeping
M = 4 and increasing U , the SER degrades as U increases.
This is intuitive, since the number of channel components to
be estimated increases as more users are active in the system.

6In practice, in the BALS and KRF methods, optimizing the beamforming
weights for data transmission takes place prior to data transmission. However,
this optimization step is out of the scope of the present paper.

V. CONCLUSION

We proposed a two-stage closed-form semi-blind receiver
for joint channel and symbol estimation in IRS-assisted MU-
MIMO systems based on a generalized PARATUCK tensor
modeling. The so-called KAKF receiver provides joint esti-
mates of the UTs-IRS and IRS-BS channels and the transmit-
ted symbols with low computational complexity. Compared
to its pilot-assisted competitor, KAKF yields more accurate
channel estimates while handling time-varying channels.
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